pH is a measure of how acidic/basic water is. The range goes from 0 to 14, with 7 being neutral. pHs of less than 7 indicate acidity, whereas a pH of greater than 7 indicates a base. pH is really a measure of the relative amount of free hydrogen and hydroxyl ions in the water. Water that has more free hydrogen ions is acidic, whereas water that has more free hydroxyl ions is basic. Since pH can be affected by chemicals in the water, pH is an important indicator of water that is changing chemically. pH is reported in "logarithmic units". Each number represents a 10-fold change in the acidity/basicness of the water. Water with a pH of five is ten times more acidic than water having a pH of six.
Importance of pH
The pH of water determines the solubility (amount that can be dissolved in the water) and biological availability (amount that can be utilized by aquatic life) of chemical constituents such as nutrients (phosphorus, nitrogen, and carbon) and heavy metals (lead, copper, cadmium, etc.). For example, in addition to affecting how much and what form of phosphorus is most abundant in the water, pH also determines whether aquatic life can use it. In the case of heavy metals, the degree to which they are soluble determines their toxicity. Metals tend to be more toxic at lower pH because they are more soluble. (Source: A Citizen's Guide to Understanding and Monitoring Lakes and Streams)
Measuring pH
The U.S. Geological Survey analyzes hundreds of thousands of water samples every year. Many measurements are made right at the field site, and many more are made on water samples back at the lab. pH is an important water measurement, which is often measured both at the sampling site and in the lab. There are large and small models of pH meters. Portable models are available to take out in the field and larger models, such as this one, are used in the lab.
To use the pH meter in the photograph below, the water sample is placed in the cup and the glass probe at the end of the retractable arm is placed in the water. Inside the thin glass bulb at the end of the probe there are two electrodes that measure voltage. One electrode is contained in a liquid that has a fixed acidity, or pH. The other electrode responds to the acidity of the water sample. A voltmeter in the probe measures the difference between the voltages of the two electrodes. The meter then translates the voltage difference into pH and displays it on the little screen on the main box.
Before taking a pH measurement, the meter must be "calibrated." The probe is immersed in a solution that has a known pH, such as pure water with a neutral pH of 7.0. The knobs on the box are used to adjust the displayed pH value to the known pH of the solution, thus calibrating the meter.
pH and water quality
Excessively high and low pHs can be detrimental for the use of water. High pH causes a bitter taste, water pipes and water-using appliances become encrusted with deposits, and it depresses the effectiveness of the disinfection of chlorine, thereby causing the need for additional chlorine when pH is high. Low-pH water will corrode or dissolve metals and other substances.
Pollution can change a water's pH, which in turn can harm animals and plants living in the water. For instance, water coming out of an abandoned coal mine can have a pH of 2, which is very acidic and would definitely affect any fish crazy enough to try to live in it! By using the logarithm scale, this mine-drainage water would be 100,000 times more acidic than neutral water -- so stay out of abandoned mines.
Contact Us
Contact us right away
BOQU Instrument focus on development and production of water quality analyzers and sensors, including water quality meter, dissolved oxygen meter, pH sensors, etc.